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Abstract. A theory is presented to describe the wetting phenomena and the contact line
depinning as a function of the microstructure of rough surfaces. The noise and fluctuations
of the quenched disorder on self-affine rough surfaces play a important role in the analysis of
the spreading of liquids on non-planar substrates. By using the long-range noise correlation
function, functional relationships that show the influence of surface roughness on the contact
angle, the critical surface tension and the depinning of the contact line are derived. Roughness
enhances wetting and broadens the three-phase contact line.

Wetting plays a prominent role in many high technology applications from microelectronics,
thin film coating, to image formation that involve the spreading of liquids on solid surfaces.
From the scientific point of view, the wetting phenomena have been widely studied both
theoretically [1] and experimentally [2] in connection with the physics of surfaces and
interfaces. The behaviour of liquid partially wetting a smooth solid surface is well
understood. However, the case of rough solid surfaces is much less clear, even though
roughness is a real-world problem and its value in practical applications is very high.
Studies of disordered and inhomogeneous surfaces [3–8] should have significant impact on
the problem of wetting of rough substrates. Recent theoretical studies [9, 10] suggest that
the surface roughness of a non-planar substrate may enhance wetting, but a quantitative
description is still lacking. Therefore, we shall focus our attention on the understanding of
the effect of the microstructure of rough surfaces on the partial wetting phenomena.

In this letter, we shall analyse the change in contact angle and determine how it is
coupled to the wandering of the three-phase contact line due to the microstructure disorder
of a rough surface. The noise caused by the irregular fluctuations on a rough surface is
treated as the source of the disorder. The quenched noise, which does not change with time,
is usually more important than temporal noise [3, 4] and will be considered in this work.
We shall also assume that the wetting fluid spreads slowly on a non-planar substrate. On
the basis of statistical physics, the macroscopic wetting phenomena will be linked to the
noise correlation function beyond the white-noise limit.

To begin with an ideal situation of flat and smooth solid surfaces, the equilibrium angle
of contactθ0 is determined by the Young–Dupre equation [1]:γs − γsl = γ cosθ0. Here
γs , γsl andγ are the interfacial free energy per unit area for the solid–vapour, solid–liquid
and liquid–vapour interfaces. The contact line of a liquid partially wetting the smooth
solid is a straight line chosen to be in they-direction: x = 0. In the real situation of
rough substrates, the Young–Dupre equation has to be generalized to include the spatial
(x, y) dependent interfacial energy densities and contact angle in the description of the
local wetting phenomena:

γs(x, y)− γsl(x, y) = γ cos[θ(x, y)] ≡ γ cos
[
θ0− φ(x, y)

]
(1)
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whereφ is due to roughness. The contact line is expected to have the formx = λ(y). The
contact free energy of the system is the sum of interaction energies with the substrate. It
is covered by vapour in the domain of−∞ < x < λ(y) and by liquid in the domain of
λ(y) < x <∞ shown in figure 1. The contact free energy is written as

Figure 1. Definitions of the contact angle and the contact line.

Ucon =
∫

dy
∫ λ(y)

−∞
γs(x, y) dx +

∫
dy
∫ ∞
λ(y)

γsl(x, y) dx

=
∫

dy
∫ λ(y)

−∞

[
γs(x, y)− γsl(x, y)

]
dx. (2)

The integrals overy are taken over the entire system. The difference in energy between the
rough and smooth surfaces is

1Ucon = Ucon − 〈Ucon〉 =
∫

dy
∫ λ(y)

−∞
1w(x, y) dx (3)

where

1w(x, y) = [γs(x, y)− γsl(x, y)]− 〈γs − γsl〉 (4)

is the local energy density. From equations (1) and (4), a spatial dependent Wenzel
roughness [11] can be written as

ε(x, y) = 1w(x, y)

〈γs − γsl〉 + 1= cos[θ0− φ(x, y)]
cosθ0

∼= 1+ θ0φ(x, y)+ . . . for θ0� 1. (5)
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This equation shows that1w(x, y) is proportional to the local slopeφ(x, y) [1] due to
surface roughness. As we shall see later that the Wenzel roughness and energy density are
essential to the study of the critical surface tension and contact line depinning, respectively.

Roughness results in local changes in the contact angle and hence the shape of contact
lines. Instead of being a straight line in the case of planar substrates, the three-phase contact
line tends to wander on thex–y plane due to the roughness shown in figure 1. The spatial
dependent angle of contact and locus of wedge intersection fluctuate on an irregular surface
in order to find their optimal angle and position via the minimization of the total free energy
of surface. Joanny and de Gennes [6] have studied the deformation of a contact line with
a small angle of contact. Let us introduce the Fourier transform in space,

[3(q), W(q)] =
∫ ∞
−∞

[λ(y), w(y)] exp(−iqy) dy. (6)

The capillary energy associated with the contact line is given by [6]

1Ucap = γ θ2
0

2

∫ ∞
−∞
|q||3(q)|2 dq

2π
. (7)

This energy arises from the increase in the surface area of the liquid–vapour interface. The
unusual|q| dependence of the energy function comes from the integration of aq2 energy
over a distance|q|−1 as a result of the contact line distortion. The total change in the free
energy from equations (3) and (7) is

1U = 1Ucap +1Ucon = γ θ2
0

2

∫ ∞
−∞
|q||3(q)|2 dq

2π
+
∫ ∞
−∞

1W(q)3(q)
dq

2π
. (8)

Minimizing 1U with respect to3, i.e. d(1U)/d3 = 0, we obtain

1W(q) = γ θ2
0 |q|3(q). (9)

We shall return to equation (9) when the energy density is determined.
The term rough surface used in this letter refers to an irregular rough surface on which

there is no overhanging region, and follows a self-affine description [12, 13]. The height
of a continuous rough surface from its smooth reference being represented by the function
h(r) where r is the position vector on the reference surfacez = 0 and its magnitude
r = |r| =

√
x2+ y2. The distribution of surface heights is described by the statistical

height distributionρ(h). It is usually to ensure thath satisfies〈h〉 = ∫∞
−∞ hρ(h) dh = 0.

The root-mean-square height of the surface is equal toσ = [
∫
h2ρ(h) dh]1/2. The standard

deviationσ is related to the fluctuation normal to the surface and the correlation lengthξ

parallel to the surface. Much of the literature assumes thatρ is Gaussian and the surface
is defined byσ andξ . However, we shall go beyond the Gaussian surface in this letter by
considering the random rough surfaces that have long-range correlation. Three independent
parameters are needed to describe their microstructure [3, 12, 13]. In addition toσ and ξ ,
the third independent parameter is the roughness exponentα that defines the scaling and
fractal properties of the surface:〈1h2(r)〉 ∼ r2α for r � ξ [3, 4].

In the discussion of surfaces without long-range slope correlation, let us introduce
1h(r) = h(r)− h(0) and consider the change of the local slope on a rough surface, which
is governed by the stochastic differential equation [5]

d(1h)

dr
= −1h

2ξ
+ η(r) (10)
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whereη is the noise term that is the source of fluctuations of the local slope. Let us first look
at the simplest case used in most applications: the noise correlation function is assumed to
be uncorrelated white noise [14] with〈η〉 = 0 and〈

η
(
r1
)
η
(
r2
)〉 = Aδ(r1 = r2). (11)

The constantA is determined by the requirement of〈1h2〉 = σ 2. This gives the strength
of noiseA = σ 2/ξ2. In terms ofφ, its autocorrelation function is related to the noise
correlation function by 2〈φ(0)φ(r)〉 = 〈η(0)η(r)〉. Taking the spatial average over the
range of the correlation lengthξ , the noise-induced wetting is determined by

φ =
[

1

2ξ

∫ ξ

0
〈η(0)η(r)〉 dr

]1/2

. (12)

This equation clearly follows the same concept as that for the root-mean-square height
mentioned earlier. Substituting equation (11) into (12) givesφ = σ/2ξ that provides a
consistent check between equations (10)–(12).

We have just calculated the effect of surface roughness on the change in the contact
angle by assuming the noise in the Langevin-like equation, (10), is uncorrelated. The next
step is to investigate the influence of correlated noise on the wetting of the self-affine
(α < 1) surface [3, 12]. The self-affine fractal is statistically invariant under an anisotropic
dilatation and is more suitable in the description of surfaces. This is in contrast to the
self-similar fractal that is invariant under isotropic dilatation. In the case of noise that
has long-range correlation, distant events may have influenced each other. The long-range
correlated noise is due to the interactive fluctuations of an irregular surface that carries a
memory effect. It serves as the source of disorder in the determination of the noise-induced
wetting. Equation (12) is again going to be used in the determination of the change in the
contact angle. Introducing the Laplace transform

G(p) ≡ L(〈η(0)η(r)〉) =
∫ ∞

0
〈η(0)η(u)〉 exp(−pu) du with u = r/ξ (13)

we obtain the long-range noise correlation function that is the Laplace inversion ofG(p)

[5]:

〈η(0)η(r)〉 = −AL−1

(
p
∑∞

n=1(−1)n 0(2αn+1)
n!p2αn

1+∑∞n=1(−1)n 0(2αn+1)
n!p2αn

)
for |p| > 1 and 06 r < ξ (14)

where0 is the gamma function. Whenα = 1/2, the right hand side of the above equation
reduces to the delta function mentioned in equation (11). The leading term in equation (14)
gives

〈η(0)η(r)〉 = σ 2

ξ2

0(2α + 1)

0(2α − 1)

(
r

ξ

)2α−2

for 1/2< α < 1 (15)

in the limit of r/ξ � 1. Taking the spatial averages, we obtain the effective Wenzel
roughness from equations (4), (5), (12) and (15):

ε = 1+ Cαθ0σ/ξ + . . . . (16)

According to Wenzel [11],ε is the ratio of non-planar-to-planar surface area and it goes
to one for the planar system. Equation (16) shows that roughening the surface reduces the
contact angle and promotes wetting. The effective energy density is

1w = γ θ0φ = Cαγ θ0σ/ξ + . . . . (17)



Letter to the Editor L449

By definition, the spatially independent1w is actually equal to the difference in the work
of adhesions between the liquid on a rough surface and that on a smooth surface. The
non-dimensionalCα is

Cα =
[

1

2(2α − 1)

0(2α + 1)

0(2α − 1)

]1/2

for 1/2< α < 1. (18)

Clearly equations (15)–(18) reveal that the effect of the long-range noise correlation onε

and1w is described in terms ofα having a value differing from 1/2.Cα is a monotonic
increasing function of the roughness exponent and is proportional to

√
α. Of course, the

general expression, (14), is needed for higher approximations. For the uncorrelated noise,
we getα = 1/2, Cα = 1/2 and equation (11). In addition to the fluctuations (σ, ξ ) of
fractal surfaces and the equilibrium properties (γ, θ0) of smooth substrates, our analysis
clearly reveals that the roughness-induced wetting increases not only with the roughness
exponent but also with the long-range noise correlation. The fractal structure beyond the
white-noise assumption plays an important role.

We are now in a position to return to equation (9). Taking the spatial average of the
Fourier inversion of equation (9) and using equation (17) gives∣∣∣∣dλ(y)dy

∣∣∣∣ = 1

θ0
φ = Cασ

θ0ξ
+ . . . (19)

where the average is taken over the range of the correlation lengthξ . This equation shows
that the slope of the contact line increases with roughness as a function of its strength and
long-range noise correlation. By definition, the spatial independent slope isφ = |dh(r)/dr|.
Therefore, equation (19) suggests that the slopeλ′(y) amplifies that of the smooth surface
by a factor of 1/θ0. As a result, the three-phase contact line is broadened by the roughness
of the surface.

The analysis of the Wenzel roughness is useful in addressing another frequently
encountered issue in chemical physics with technological significance. The surface energy
(or tension) of solid may not be measured directly because of the viscoelastic constraint of
the bulk phase, which necessitates the use of indirect methods. Zisman use extrapolated
contact angle measurements to define the critical surface tension (γc0) for planar substrates
as [2]

cosθ0 = 1+ b(γc0− γ ) (20)

whereb = −d(cosθ0)/dγ > 0 is Zisman’s slope of a smooth substrate.γc0 is characterized
as an important property of solid surface. In the case of rough surfaces, we can write the
effective critical surface tension (γ c) in the same form:

cos
(
θ0− φ

) = 1+ B(γ c − γ ) (21)

whereB = −d(cosθ0 − φ)/dγ > 0 is the yet to be determined Zisman’s slope of a rough
substrate. Equations (20) and (21) are related to the effective Wenzel roughness by:

cos
(
θ0− φ

) = ε cosθ0. (22)

Combining equations (20)–(22) and using the conditionγ c = γc0 at φ = 0, we get

γ c = γc0+
ε − 1

bε
(23)

and

B = εb = −εd(cosθ0)

dγ
> 0. (24)
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Considerγc0 = 20 dyne cm−1 andb = 0.025 for a polymeric surface [2]. In figure 2, the
influence of surface roughness on the Zisman plot is calculated from equations (21)–(24).
Higher critical surface tension and steeper slope are seen for rougher surfaces. Figure 2
also shows thatφ > 0 for θ0 < 90◦. Substituting equation (16) into (23) yields

γ c = γc0+
θ0Cασ

bξ
+ . . . . (25)

As the roughness increases, the critical surface tension of the solid is raised fromγc0
to a value that depends on the strength and range of the correlated noise. For practical
applications, it becomes evident from equation (25) that the physical and chemical treatment
of low-energy surfaces to improve the adhesion may changeγ c due to a change in surface
chemistry or simply increaseγ c due to surface roughness.

Figure 2. Effect of surface roughness on the Zisman plot.

In summary, a new concept has been developed that enables us to determine the effect of
surface roughness on the wetting properties of surfaces from the noise correlation function.
The long-range correlated noise is due to the interactive fluctuations of an irregular surface
and is treated as the source of disorder in the determination of the noise-induced wetting.
Our analysis goes beyond the familiar white noise assumption. Analytical expressions and
functional relationships of the contact angle, the critical surface tension and the contact
line depinning have been derived as a function of the microstructure of a rough surface. In
addition to the fluctuations (σ, ξ ) of fractal surfaces and the equilibrium properties (γ, θ0) of
smooth substrates, the noise-induced wetting depends not only on the roughness exponent
(α) but also on the strength and range of the correlated noise. Roughening the surface
reduces the contact angle, increases the critical surface tension and broadens the three-
phase contact line.

References

[1] de Gennes P G 1985Rev. Mod. Phys.57 827
de Gennes P G 1997Soft Interfaces(New York: Cambridge University Press)



Letter to the Editor L451

[2] Zisman W A 1964 Contact Angle, Wettability and Adhesion (Advances in Chemistry Series, No 43)ed F M
Fowkes (Washington, DC: American Chemical Society)

[3] Barabasi A-L and Stanley H E 1995Fractal Concepts in Surface Growth(New York: Cambridge University
Press)

[4] Halpin-Healy T and Zhang Y-C 1995Phys. Rep.254 215
[5] Chow T S 1997Phys. Rev. Lett.79 1086
[6] Joanny J F and de Gennes P G 1984J. Chem. Phys.81 552
[7] Mash J A and Cazabat A M 1993 Phys. Rev. Lett.71 2433
[8] Ertas D and Kardar M 1994Phys. Rev.E 49 R2532
[9] Borgs C, De Coninck J, Kotecky R and Zinque M 1995Phys. Rev. Lett.74 2292

[10] Parry A O, Swain P S and Fox J A 1996J. Phys.: Condens. Matter8 L659
[11] Wenzel R N 1949J. Phys. Colloid Chem.53 1466
[12] Gouyet J-F, Rosso M and Sapoval B 1991Fractals in Disordered Systemsed A Bunde and S Halvin (Berlin:

Springer)
[13] Ogilvy J V 1991Theory of Wave Scattering from Random Rough Surfaces(Bristol: Institute of Physics)
[14] Marsili M, Maritan A, Toigo F and Banavar J R 1996Rev. Mod. Phys.68 963


